
Important Notice
This TR is a simplified version of our paper “An Upper Bound to the Lateness of Soft Real-time

Tasks Scheduled by EDF on Multiprocessors”, published in the Proceedings of RTSS’05.
Unfortunately, in that paper there is an error in the proof ofLemma 3. This TR contains only a
subset of the sane proofs of that paper. The proofs used in this TR leads to a higher bound with

respect to the published paper.
However, we are working on a new TR based on a set of proofs not affected by the above error.

Please check at http://feanor.sssup.it/~pv or contact us for further details.

1

An Upper Bound to the Lateness of EDF on Multiprocessors
Technical Report

Paolo Valente
Scuola Superiore S. Anna, Italy

pv@gandalf.sssup.it

Giuseppe Lipari
Scuola Superiore S. Anna, Italy

lipari@sssup.it

Abstract

Multiprocessors are now commonly used for efficiently achieving high computational power, even in embedded
systems. A considerable research effort is being addressedto schedulability analysis of global scheduling in Symmetric
Multiprocessor Platforms (SMP), where there is a global queue of ready tasks, and preemption and migration are allowed.

In many soft real-time applications (as e.g. multimedia andtelecommunication) a bounded lateness is often tolerated.
Moreover, if tasks are allowed to dynamically enter and leave the system, global scheduling is a more appealing strategy
than partitioning.

Unfortunately, when considering priority-driven scheduling of periodic/sporadic tasks, previous results only focused
on guaranteeing all deadlines, and provided worst-case utilization bounds that are lower than the maximum available
computational power. In particular, until now, the existence of an upper bound on the lateness of soft real-time tasks for
a fully utilized SMP was still an open problem.

In this paper we do solve this problem by providing an upper bound to the lateness of periodic/sporadic tasks – with
relative deadlines equal to periods/minimum inter-arrival times – scheduled by EDF on a SMP, under the only assumption
that the total utilization is no higher than the total systemcapacity.

1 Introduction

Multiprocessors are now commonplace in general-purpose aswell as in embedded systems. They provide a cost-effective

solution to achieve high computational power. Besides, dueto technological and physical constraints, increasing thespeed

of single processors is becoming more and more difficult. Hence multiprocessor platforms seem to be the only option for

the most computationally demanding applications.

In the last year a large number of multi-core chips as well as multiprocessor architectures have been launched in the

market. For example, to meet the requirements of demanding embedded real-time applications, ARM proposes MPCore,

a synthesizable multiprocessor core, while Motorola proposes its PowerPMC-280 SMP platform. In the high-end general

purpose processor market, both Intel, with its Pentium D brand, and AMD, with e.g. the Opteron dual-core processor,

envision multi-core processors as the architecture of choice for high performance applications.

In this paper we consider soft real-time tasks to be executedon a Symmetric Multi Processor (SMP) platforms, com-

prised ofM identical processors with constant speed. Unfortunately,multiprocessor platforms pose greater difficulties

than single processor ones when applications have time requirements. Many negative results are known on the scheduling

of real-time applications on multiprocessors, including SMPs [1, 2, 4, 8, 3, 7, 6, 12].

The results presented in this paper are related to the class of soft real-time applications that can be modeled as a set of

periodic/sporadic tasks, i.e. sequences of jobs to execute, where each job is associated with a relative completion deadline

equal to the period/minimum inter-arrival time. In soft real-time applications, deadlines are not critical, but it is important

2

to respect someQuality of Service(QoS) requirements. Examples of such QoS constraints are: limited number of deadline

misses, limited deadline miss percentage, and so on.

In this paper we are interested in soft real-time applications that can tolerate a bounded lateness with respect to the

desired deadline. This kind of constraint matches a large class of applications, like multimedia, telecommunication,

and financial ones. As an example, consider a video player: a given frame-rate must be guaranteed, but a jitter of few

milliseconds in the frame-time does not significantly affect the quality of the video. In contrast, audio quality is extremely

sensitive to silence gaps. However, audio samples are typically buffered and played back at the desired rate by the audio

device. A bounded lateness in providing new samples to the device can be easily compensated using a pre-buffering

strategy.

1.1 Related work

Research on real-time multiprocessor scheduling has been mainly focused on guaranteeing strict deadline observance.The

two main approaches arepartitioningandglobal scheduling. In partitioning the task set is divided – partitioned – intoM

groups. Each group of tasks is assigned to one of the processors, and processors are scheduled independently. The main

advantage of such an approach is its simplicity, as a multiprocessor scheduling problem is reduced toM uniprocessor

ones. Furthermore, since there is no migration, this approach presents a low overhead.

Unfortunately, there are various negative drawbacks. First, finding an optimal assignment of tasks to processors is a

bin-packing problem, which is NP-hard in the strong sense. Hence, sub-optimal heuristics are usually adopted [13, 11, 9].

Second, there are task sets that are schedulable only if tasks are not partitioned [6]. Also, when tasks are allowed to

dynamically enter and leave the system, a global re-assignment of tasks to processors may be necessary to balance the

load, otherwise the overall utilization may decrease dramatically.

In global scheduling, jobs are inserted in a global priority-orderedready queue, and at each time instant the available

processors are allocated to the highest priority jobs in theready queue. Tasks are in general subject to migration, i.e.

during the system lifetime they may be executed on differentprocessors.

An important classification is whether a scheduling algorithm ispriority-driven [8], i.e. each job is assigned a fixed

priority, or the priority of a job can vary over time. An important class of global schedulers of the second type is the class

of PFair schedulers [5, 14]. PFair schedulers break jobs into smaller uniform pieces, which are then scheduled.

Unfortunately, in case of either partitioning or priority-driven scheduling, meeting all deadlines is paid in terms of

schedulable utilization: any possible priority-driven and/or partitioned scheduling algorithm has a total worst-case uti-

lization upper bound no larger thanM+1
2 [6]. On the contrary, PFair algorithms are the only known schedulers able to

meet all the deadlines still achieving full utilization. Unfortunately they may suffer from high scheduling and migration

overhead.

3

Proc.

P1 1

1, 2

1, 2

2, 3

2

1
Job arrivalsE, PTask

3
t

1P2
t

Speed
service

Dual proc.

1

1 1

653

2

33
2 41

3 2 32 3 2

2 2

1 1

1

Figure 1: Example of unbounded lateness with fixed priority scheduling.

1.2 Motivation

Until now, soft real-time applications could be scheduled on multiprocessor platforms either using efficient priority-

driven schedulers and obtaining zero lateness, but wastingup to half of the available computational power; or using PFair

algorithms, which do achieve full utilization with zero lateness, but may cause high overhead.

Except for PFair scheduling, to the best of the authors’ knowledge, no lateness bound is available for soft real-time

tasks that fully utilize a multiprocessor. In particular, it was not even knownif lateness was actually bounded.

When considering partitioning, it is impossible to reach full utilization with bounded lateness, as shown by the fol-

lowing example. Consider 2 processors and 3 tasks, each one with utilization2/3. There is no way to assign all tasks to

the processors and achieve bounded lateness. In fact, either we overload one of the processors, or we discard one of the

tasks, achieving a total utilization of4/3.

When considering global scheduling, not all priority-driven scheduling algorithms can achieve bounded lateness.

Consider a system with 2 processors and 3 tasks, scheduled byfixed priority with priority assigned according to Rate

Monotonic. Task 1 and 2 have computation time 1 and period 2; task 3 has computation time 2 and period 3. The total

utilization is5/3 < 2. Job arrivals are shown in the top part of Figure 1. Each arriving job is depicted as a rectangle: the

projection of the left corner of each rectangle represents the arrival time of the corresponding job, while the length ofthe

base is equal to the execution time of the job. The number on each rectangle refers to the task that issued the job. The

schedule of the first 6 instants of time is shown in the bottom part of the figure. Notice that task 3 starts accumulating

instances, and the lateness of each instance indefinitely increases.

In the previous example, it is easy to see that EDF would have not suffered from the problem of unbounded lateness,

because jobs whose deadline is in the past have larger priority than newly arriving jobs. Intuitively, this property of EDF

priorities apparently guarantees a bounded lateness. However, until now, providing an upper bound to the lateness of soft

4

real-time tasks for a fully utilized SMP, and under priority-driven scheduling, was still an open problem.

1.3 Contribution

In this paper we consider a class of global priority-driven schedulers, theDPS Finish Time Schedulers(see Section 4.1 for

a definition of this class), which EDF belongs to. We prove that these schedulers guarantee bounded lateness even when

the system is fully utilized. We achieve this result by actually computing an upper bound to the maximum lateness in a

simple closed form.

The computed upper-bound grows linearly withM . We performed a large number of simulation experiments to

see how the actual maximum lateness experienced by the taskscompares to our worst-case bound. According to our

simulations, the grow rate of the maximum lateness experienced by the tasks is instead sub-linear with respect the number

of processors. However, the bound resulted virtually tightin case of2 processors: the ratio between the measured

maximum lateness and the bound is0.99. All the results are discussed more extensively in Section 5.

The paper is organized as follows. In Section 2 we formally introduce the system and the notations. In Section 3 we

present the main results, whereas in Section 4 we present theproofs. Finally, simulation results are reported in Section 5.

2 System description and notations

We consider a system consisting ofN periodic or sporadic tasks to be executed on a multiprocessor platform with M

identical processors. All the processors have the samespeed(capacity) R, measured in number of execution cycles per

time units. Each taski consists of an infinite sequence of jobsJj
i j = 1, . . . to be executed. Each jobJj

i is characterized

by an activation (arrival) timeaj
i , a lengthL(Jj

i), equal to the number of execution cycles for completing the job, and a

completion deadlinedj
i . We say that a jobJj

i has an execution timeej
i ≡

L(Jj
i)

R
. The following relations hold:

aj
i ≥ aj−1

i + Ti

dj
i = aj

i + Ti

whereTi is the task period (minimum inter-arrival time). The completion (finish) time of the jobJj
i is denoted asf j

i . We

define aslatenessof a jobJj
i the quantitylatji ≡ max

[

0, f j
i − dj

i

]

.

We denote, respectively, withLi ≡ maxj

{

L(Jj
i)

}

andEi ≡ Li

R
the worst-case job length and the worst-case job

execution time for taski. Finally, we defineUi ≡
Ei

Ti
≤ 1 as theutilizationof taski. We assume that

∑N

i=1 Ui ≤ M .

In [10] the concept ofpredictablescheduler is defined. A scheduler is predictable if, given two sets of jobs with the

same cardinality and such that, for each job in the first set, there is a corresponding job in the second set with the same

arrival time and priority, and with execution time no largerthan the job in the first set, then the finish time of each job in

the first set is no lower than the finish time of the corresponding job in the second set. They also proved that any priority

driven scheduler ispredictable. Hence, for simplicity, in the remainder we will assume thateach jobJj
i has a length

L(Jj
i) = Li.

5

We assume that a job cannot start executing before the previous job of the same task has completed. We refer to this

constraint as theprecedence constraint. We stress the fact that a job can arrive alsobeforethe previous jobs of the same

task have completed. We say that a jobJj
i is pendingat timet if and only if aj

i ≤ t < f j
i (hence a job under service is

still pending). Every task has a FIFO queue where its pendingjobs are stored. We say that a task isactiveif it has pending

jobs.

We define astotal speedandmaximum total speedof a multiprocessor at timet, respectively,Mbusy(t) ·R andM ·R,

whereMbusy(t) ≤ M is the number of busy processors at timet. We define asunder-loadandfull-load periods the time

intervals during whichMbusy(t) < M andMbusy(t) = M , respectively.

In the remainder of the paper we will refer to the above definedsystem as theMulti Processor System(MPS).

As stated in the introduction, we considerglobal priority-drivenscheduling. At each time instant the available proces-

sors are allocated to the highest priority jobs in the ready queue. We assume that ties are arbitrarily broken. We allow

preemption and migration, i.e. jobs can be suspended and later resumed on the same or on a different processor, due to

the arrival of some higher priority job. In particular, we will focus on a special class of global priority-driven scheduling

algorithms – defined in the next subsection – that includes EDF.

We call a job fraction any portion of a job continuously executed between two consecutive start (or resume) and

suspend (or completion) events. We define as priority of a jobfraction the priority of the job the fraction belongs to. We

define achainof jobs of a task any sequence of job fractions belonging to the same task and served back-to-back, and

headof the chain the first job fraction in the sequence.

We will assume any generic functionf(t) of the time to be right continuous. Furthermore, for compactness, we set

f(x−) = limt→x− f(t), and we assume that the exponentiationax, with exponentx = 0, is always equal to1 (even when

the basea is infinite).

2.1 The Dedicated Processor System

In this subsection we introduce theDedicated Processor System(DPS), a special reference system that we will use to

define the class of global priority-driven schedulers for which our results hold.

Definition 1 Given a MPS, we define as its referenceDedicated Processor System(DPS) the system consisting of the

same task set and a multi-processor platform containing a dedicated processor for each of theN tasks in the MPS; each

dedicated processor has a speedRDPS
i ≡ Ui · R i = 1, 2, . . . , N .

For any jobJj
i we define as itsvirtual finish timethe time instantF j

i at which it is completed in the DPS. Since

Ti = Ei

Ui
∀i, and since we assumed that all the jobs of the i-th task have worst-case lengthLi, we have that the DPS

completes each job exactly on its deadline and, hence, no later than the arrival of the next job of the same task, i.e.∀Jj
i

F j
i = dj

i ≤ aj+1
i . Consequently∀Jj

i latj
i = f j

i − F j
i . This is the crucial property that we will exploit to computean

upper bound to the maximum lateness.

6

A

3/4

3/4

3/4

3, 4

3, 4

3, 4

3, 4

DP2

DP3

DP1

DP4

t

t

1

2

3

4

Task E, P

Proc. Speed DPS service

Job arrivals

t

1

1

1P3

P2

P1
Proc. Speed MPS service

4
3

1
2

{1, 2, 3, 4}

{3, 4}

{1, 2, 3, 4}

t

{4}

{1, 2, 3, 4}
B

3/4

)|t|α(

2

111

s=15

1211873 15 16

b=8

1

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

1 1 1 1

11

1 4

3

2

4

3

2

4

4

2

343

1

Figure 2: Comparing the MPS and the DPS.

An example of the service provided by a MPS and by its reference DPS is shown in Figure 2.A. The task set is

comprised of4 periodic tasks, all with period4 and job length3. Arriving jobs are depicted using the same conventions

as in Figure 1.

Jobs are scheduled by EDF in the MPS. Especially, since ties can be arbitrarily broken, in this example we chose to

break ties in favor of lower index tasks to draw one of the possible schedules. The figure clearly shows that, whereas the

DPS correctly schedules all the jobs, the MPS misses e.g. thedeadline of jobJ1
4 at time4. UponJ1

4 completion, task4

has lateness3. The situation gets worse during the second period, and bothJ2
3 andJ2

4 miss their deadline at time8.

Hereafter we will consider the following two systems: a generic MPS and its reference DPS. We will refer to these

systems astheMPS andtheDPS, respectively. We can now define the class of schedulers we will focus on.

Definition 2 We say that a priority-driven scheduler for the MPS is a DPS Finish Time (DPS-FT) scheduler, if, denoted

with P j
i the priority of the generic jobJj

i , we have that

∀Jj
i , J l

k

{

P j
i = P l

k ⇐⇒ F j
i = F l

k

P j
i > P l

k ⇐⇒ F j
i < F l

k

(1)

and, at each time instant, the available processors are allocated to the highest priority jobs. Ties are arbitrarily broken.

In other words, in a DPS-FT scheduler the ordering among job priorities is the opposite of the ordering between job finish

times in the DPS. Since∀Jj
i F j

i = dj
i , EDF is a DPS-FT scheduler. Hereafter, we will assume that a DPS-FT scheduler

is used to schedule jobs in the MPS.

7

N Number of tasks in the task set
R Speed of any of the processors
M Number of processors in the system
WS(t) Total amount of service delivered by the systemS during[0, t]
WS

i (t) Amount of service received by thei-th task during[0, t] in a systemS
L(J) Length (number of execution cycles) of job J
Jj

i The j-th job of the i-th task
aj

i , sj
i , f j

i Arrival time, start time, finish time ofJj
i

F j
i Virtual finish time ofJj

i , i.e. finish time ofJj
i in the DPS

Li (Worst-case) length of i-th task
Ei (Worst-case) execution time ofi-th task
Lmax Maximum job length over all the tasks
Emax Maximum execution time over all the tasks
lagi(t) Lag of taski (WDPS

i (t) − WMPS
i (t)).

Table 1: Notations used in this paper.

Under the assumptions of constant speed processors and of tasks with constant job length, any DPS-FT scheduler

is equivalent to EDF (i.e. it generates the same schedules).However, all the following lemmas and theorems will be

actually proved in the more general case where all the processors have the same time-varying speedR(t), and where each

dedicated processor has time-varying speedRDPS
i (t) = Ui · R(t). In this case, the class of DPS-FT schedulers can also

include schedulers different from EDF. While this generalization does not complicate the proofs, it paves the way for

future more general results.

We define asWMPS
i (t) andWDPS

i (t) the amount of service provided by, respectively, the MPS andthe DPS to thei-

th task during[0, t]. We define the total amount of service provided by the MPS and the DPS during[0, t] as, respectively,

WMPS(t) ≡
∑

i WMPS
i (t) andWDPS(t) ≡

∑

i WDPS
i (t). We define aslag of the i-th task at timet the following

quantity:

lagi(t) ≡ WDPS
i (t) − WMPS

i (t)

For brevity, given two time instantst2 > t1, we defineWMPS
i (t1, t2) ≡ WMPS

i (t2)−WMPS
i (t1). We use the same

short notation forWDPS
i , WMPS , WDPS andlagi.

In the proofs we will often use the following property: sinceRDPS
i ≤ R ∀i, the lag of a task can not increase during

the service of one of its job chains. For example, in Figure 2.A the lag of task4 increases during[0, 3], and it is equal to

9
4 at time3. Conversely, it decreases during[3, 6], and it is e.g. equal to2 at time4.

Since the lag of a task may be a useful figure of merit, in this paper we report an upper bound to the maximum per-task

lag in addition to the one on the maximum lateness. The notations introduced until now are summarized in Table 2.1.

3 Maximum lag and maximum lateness

In this section we enunciate and briefly discuss the following theorems, which constitute the main results of this paper.

8

Theorem 1 If an MPS comprised ofM identical processors is scheduled using a DPS-FT scheduler, the following guar-

antees on the lag experienced by any task hold:

∀i, t lagi(t) ≤ (1 −
Ui

M
) · Li + Ui ·

(M − 1)2

M
· Lmax. (2)

∀Jj
i lagi(f

j
i) ≤ Ui ·

[

M − 1

M
· Li +

(M − 1)2

M
· Lmax

]

. (3)

Theorem 2 If an MPS comprised ofM identical constant speed processors is scheduled using a DPS-FT scheduler, the

following guarantees on the job lateness hold:

∀Jj
i latj

i ≤
M − 1

M
· Ei +

(M − 1)2

M
· Emax. (4)

The formal proofs of the theorems are reported in the next section. We can note that processors are not required to

have constant speed for Theorem 1 to hold (but they must be identical, i.e. they must all have the same speed at any time

instant). With regard to Theorem 2, we highlight that, whenM = 1, Eq. (4) collapses to the EDF guarantee∀Jj
i latj

i = 0.

4 Proofs

In this section we will formally prove Theorems 1 and 2.

4.1 Proof notations and rationale

In this subsection we introduce the notations used in the proofs, the main idea behind them, and the proof strategy. The

proofs are essentially based on computing a bound tolagi(t), from which the bound on the lateness will be then derived.

The following Lemma restricts the time instants to be considered when computing an upper bound to the lag.

Lemma 1 The maximum lag experienced by a task is no higher than the maximum lag that the task can experience at the

start time of some of its job fractions.

Proof. When a task is inactive, its lag is necessarily no higher than0. Consider instead a generic maximal active period

[t1, t2] of taski. Let Xk
i be thek-th job fraction of taski served by the MPS. Any time instantt ∈ [t1, t2] necessarily

falls into a sub-interval[fk−1
i , fk

i] ⊆ [t1, t2] ranging from the finish timefk−1
i of a job fractionXk−1

i , and the finish

time of the next job fractionXk
i served by the MPS (ifXk

i is the first job fraction of taski executed during[t1, t2], then

we assumefk−1
i = t1). Since the lag can not increase during the service of a job, we have that

max
t∈[fk−1, fk

i]
lagi(t) = lagi(s

k
i)

wheresk
i is the start time of the fractionXk

i . 2

Consequently, in the next subsection we will focus on computing the maximum lag of the task at the start times of a

generic job fractionX belonging to a jobJj
i .

9

First, if s = aj
i , thenlagi(s) = 0 because both the MPS and DPS have finished all the pending jobsats−.

Let us then consider the cases > aj
i (note that, in general,s might be even larger thanF j

i , i.e. larger than the job

deadline in case of EDF).

To handle this case, we define asα(t) the set of the tasks owning pending jobs with priority no lower thanX at timet.

For example, in case of EDF,α(t) includes all the tasks owning jobs with deadline no higher thanJj
i (i.e. than the jobX

belongs to) at timet. Note that∀t ∈ [aj
i , s) i ∈ α(t), becauseJj

i is pending during[aj
i , s) and, by definition, its priority

is equal to the priority of its fractionX . Figure 2.B shows the values assumed byα(t) and|α(t)| during[0, s), assuming

the fractionX to coincide with the whole jobJ4
4 , which in turn starts service at times = 15 in Figure 2.A.

There are only two possible causes forX to start at times > aj
i :

1. X is blocked by priority, that is at leastM tasks own pending jobs with priority no lower thanJj
i at times−

(|α(s−)| ≥ M).

2. X is blocked by the precedence constraint at times−.

In the second case,X belongs to a chain. Since the lag of a task does not increase while its jobs are being served,

the maximum lag of the task is trivially upper bounded by its maximum lag at the start time of the chain head. This is

in its turn equal to0, unless the chain head is blocked by priority. As a conclusion, the problem that remains to solve is

computing the maximum lag of the task at the start time of a fraction blocked by priority. To this aim, we will use the

following two definitions.

Definition 3 Given a job fractionX blocked by priority, we define aslast priority blocking periodfor X the time interval

[b, s), whereb is the smallest time instantb such that∀t ∈ [b, s) |α(t)| ≥ M , i.e. such that at leastM tasks are

continuously active and have pending jobs with priority no lower thanX during [b, s).

Figure 2.B shows the last priority blocking period of the jobJ4
4 . We note thatb might in general precedeaj

i . Further-

more, we will exploit the following two properties of the last priority blocking period:|α(b−)| < M , and the MPS is in

full load during[b, s).

Definition 4 We defineΓ as the set of the jobs that receive service in the MPS during[b, s).

Notice that, by definition of last priority blocking period,the jobs inΓ have priority no lower thanX . As an example,

assuming againX = J4
4 in Fig. 2, during[b, s) the MPS serves the jobsΓ = {J2

3 , J2
4 , J3

1 , J3
2 , J3

3 , J3
4 , J4

1 , J4
2 , J4

3}.

The MPS starts servingX only after serving part of the jobs inΓ. However, the jobs inΓ have priority no lower than

Jj
i , which means that they finish no later thanJj

i in the DPS. Hence, the DPS must completeall the jobs inΓ before it

can completeJj
i . Furthermore, since the MPS works at maximum total speed during [b, s], it consumesthe jobs inΓ at

a pace no lower than the one at which the DPS could consume themduring the same time interval. For these reasons,

10

intuitively, the maximum value oflagi(s) depends onhow aheadis the DPS with respect to the MPS in the service of the

jobs inΓ at timeb. More formally, we will show that the maximum value oflagi(s) depends on the following quantity:

∑

j∈αpos lagj(b), whereαpos ⊆ α(b) is the subset of the tasks with positive lag at timeb. We calltotal lag related to the

fractionX the above quantity.

We can now define the proof strategy: we will first express the maximum lag of a task as a function of the total lag

in Subsection 4.2. This general formula will serve two purposes. We will first use it in Subsection 4.3 to compute an

upper bound to the total lag itself. Then, in the last subsection, we will substitute the just computed bound in the general

formula, thus getting an upper bound to the lag experienced by a task. Finally, the latter bound will be used to compute

an upper bound to the lateness experienced by a job.

4.2 Basic lemmas

This subsection contains three lemmas, which allow us to provide an upper bound to the lag of a task as a function of the

total lag.

As shown in the last of the three lemmas, lagi(s) is maximum ifF j
i ≤ s. In such a case, it is easy to understand that the

value of lagi(s) grows with on the amount of serviceWDPS
i (F j

i , s) provided by the DPS to thei-th task during[F j
i , s].

The next lemma provides an upper bound toWDPS
i (F j

i , s), as a function of the differenceWMPS(b, s)−WDPS(b, F j
i).

This intermediate result is used in the successive lemma to find an upper bound toWDPS
i (F j

i , s) as a function of the total

lag.

Lemma 2 Let X be a generic job fraction, belonging to a jobJj
i , that starts service at times in the MPS after being

blocked by priority. We have:
WDPS

i (s) − WDPS
i (F j

i) ≤
Ui

M
·
[

WMPS(b, s) − WDPS(b, F j
i)

] (5)

whereb is the beginning of the last priority blocking period ofX .

Proof. We defineRDPS(t) as the total speed of the DPS at timet, ADPS(t) as the set of the tasks active in the DPS at

time t, Bi ≡ {b ≤ t ≤ min(s, F j
i) | i ∈ ADPS(t)} andB̄i ≡ [b, min(s, F j

i)]\Bi (respectively, the busy and idle periods

of thei-th task during[b, min(s, F j
i)]). First, we work on the differenceWDPS

i (s)−WDPS
i (min(s, F j

i)). We can make

the following algebraic manipulations:

WDPS
i (s) − WDPS

i (min(s, F j
i)) =

(WDPS
i (s) − WDPS

i (b)) − (WDPS
i (F j

i) − WDPS
i (b)) =

WDPS
i (b, s) − WDPS

i (b, min(s, F j
i)) =

WDPS
i (b, s) +

∫

B̄i

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ −

∫

B̄i

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ − WDPS

i (b, min(s, F j
i))

(6)

To get the thesis we will first find an upper bound toWDPS
i (b, s) +

∫

B̄i

UiP
j∈ADP S(τ) Uj

· RDPS(τ) · dτ and then a

lower bound to
∫

B̄i

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ + WDPS

i (b, min(s, F j
i)). Since[b, s] falls inside a full-load period

11

(at leastM tasks are active in the MPS during[b, s)), then∀t ∈ [b, s] the total speed of the MPS isRMPS(t) = M ·R(t).

In contrast, we have

∀t RDPS(t) =
∑

j∈ADP S(t)

Uj · R(t) =

∑

j∈ADP S(t) Uj

M
· RMPS(t)

Furthermore, definedχi(t) as the fractionRDPS(t) that the DPS dedicates to thei − th task at timet, we have∀t ∈

Bi χi(t) = UiP
j∈ADP S(t)

Uj
. Hence:

WDPS
i (b, s) +

∫

B̄i

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ ≤

∫

Bi

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ +

∫ s

min(s, F
j
i)

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ+

+
∫

B̄i

UiP
j∈ADP S(τ) Uj

· RDPS(τ) · dτ ≤
∫ s

b
UiP

j∈ADP S(τ)
Uj

· RDPS(τ) · dτ =
∫ s

b
UiP

j∈ADP S(τ) Uj
·
P

j∈ADP S(τ) Uj

M
· RMPS(τ) =

Ui

M
·
∫ s

b
RMPS(τ) · dτ =

Ui

M
· WMPS(b, s)

(7)

We find now a lower bound to
∫

B̄i
χi(τ) ·RDPS(τ) · dτ + WDPS

i (b, F j
i). Considering that[b, min(s, F j

i)] ⊆ [b, s],

and that∀t
∑

j∈ADP S(t) Uj ≤ M , we have

∫

B̄i

UiP
j∈ADP S(τ) Uj

· RDPS(τ) · dτ + WDPS
i (b, min(s, F j

i)) =
∫

B̄i

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ +

∫

Bi

UiP
j∈ADP S(τ)

Uj
· RDPS(τ) · dτ ≥

∫ min(F j
i , s)

b
UiP

j∈ADP S(τ) Uj
· RDPS(τ) · dτ ≥

∫ min(F j
i , s)

b
Ui

M
· RDPS(τ) · dτ =

Ui

M
· WDPS(b, min(F j

i , s))

(8)

Substituting (8), (7) and ((11)) in (6), we get

WDPS
i (s) − WDPS

i (min(s, F j
i)) ≤

Ui

M
·
[

WMPS(b, s) − WDPS(b, min(F j
i , s))

] (9)

If F j
i ≤ s the thesis holds. Ifs ≤ F j

i consider that the jobJj
i is already arrived at times, but it is finished only at time

F j
i in the DPS. This implies that thei-th is continuously served in the DPS during[s, F j

i]. Hence

WDPS
i (s, F j

i) ≥
Ui

M
·
[

WDPS(s, F j
i)

]

=

Ui

M
·
[

WDPS(b, F j
i) − WDPS(b, s))

]

≥

Ui

M
·
[

WDPS(b, F j
i) − WMPS(b, s))

]

(10)

2

As an intermediate step for computing an upper bound to lagi(s), the next lemma provides an upper bound to the

differenceWDPS
i (s) − WDPS

i (F j
i). The bound is achieved in two steps. First it is computed an upper bound to the

difference between the total amount of serviceWMPS(b, s) that the MPS provides during[b, s] and the total amount of

serviceWDPS(b, F j
i) that the DPS must provide during[b, F j

i] to finishJj
i . Then the previous lemma is applied.

12

Lemma 3 Let X be a generic job fraction, belonging to a jobJj
i , that starts service at times in the MPS after being

blocked by priority. We have:
WDPS

i (s) − WDPS
i (F j

i) ≤
Ui

M
·
[

∑

h∈αpos lagh(b) − Lres(Jj
i)

] (11)

whereLres(Jj
i) is the difference between the length ofJj

i and the portion ofJj
i already served by the MPS at times, b is

the beginning of the last priority blocking period ofX , andαpos ≡ {i ∈ α(b) | lagi(b) > 0}.

Proof. Le Λ be the set of the tasks that receives some service in the MPS during [b, s), we have

WMPS(b, s) =
∑

l∈Λ WMPS
l (b, s)

(12)

The amount of service
∑

l∈Λ WMPS
l (b, s) is equal to the sum of the portion of the jobs inΓ served by the MPS

during [b, s). All the jobs inΓ have priority no lower thanX . Hence the DPS must have finished both these jobs and

Jj
i before finishingJj

i at timeF j
i . Furthermore, by definition of last priority blocking period, not all the jobs inΓ have

arrived at timeb. This implies thatF j
i > b. Under this hypothesis, during[b, F j

i) the DPS must provide the tasks inΛ

with the same total amount of service
∑

l∈Λ WMPS
l (b, s) they receive in the MPS during[b, s], minus the extra service,

with respect to the MPS, it already provided to the jobs inΓ ∪ Jj
i at timeb. The latter quantity is upper bounded by

∑

l∈Λ∪i lagl(b). In the end, we have:

WDPS(b, F j
j) ≥

∑

l∈Λ WMPS
l (b, s) + Lres(Jj

i) −
∑

l∈Λ∪i lagl(b) ≥
∑

l∈Λ WMPS
l (b, s) + Lres(Jj

i) −
∑

l∈αpos lagl(b)

Subtracting the last inequality from (12), we get:

WMPS(b, s) − WDPS(b, F j
i) ≤

∑

l∈Λ WMPS
l (b, s) −

(

∑

l∈Λ WMPS
l (b, s) + Lres(Jj

i) −
∑

l∈αpos lagl(b)
)

=
∑

l∈αpos lagl(b) − Lres(Jj
i)

(13)

Substituting the previous inequality in (5), we get the thesis.

2

Using the bound computed in the previous lemma, we can now prove the following lemma, which expresses the

maximum lag of a task as a function of the total lag. This lemmawill constitute the basic building block for computing

an upper bound to both the total lag and the lag of any task.

Lemma 4 Let X be a generic job fraction, belonging to a jobJj
i , that starts service at times in the MPS after being

blocked by priority. We have:

lagi(s) ≤ Lres(Jj
i) +

Ui

M
·

∑

j∈αpos

lagj(b) − Lres(Jj
i)

 (14)

whereLres(Jj
i) is the difference between the length ofJj

i and the portion ofJj
i already served by the MPS at times, b is

the beginning of the last priority blocking period ofX , andαpos ≡ {i ∈ α(b) | lagi(b) > 0}.

13

Proof. The proof strategy is as follows: we will first expresslagi(F
j
i) in a convenient form, then we will find an upper

bound tolagi(F
j
i , s), finally we will sum this bound tolagi(F

j
i). We have that:

WDPS
i (F j

i) = WMPS
i (s) + Lres(Jj

i) (15)

We can do some algebraic manipulations:

WMPS
i (s) =

WMPS
i (F j

i) +
[

WMPS
i (s) − WMPS

i (F j
i)

]

=

WMPS
i (F j

i) + ∆

(16)

where∆ ≡ WMPS
i (s) − WMPS

i (F j
i). Substituting successively (15) and (16) into the definition of lagi(F

j
i), we get

lagi(F
j
i) =

WDPS
i (F j

i) − WMPS
i (F j

i) =

WMPS
i (s) + Lres(Jj

i) − WMPS
i (F j

i) =

Lres(Jj
i) +

[

WMPS
i (s) − WMPS

i (F j
i)

]

=

Lres(Jj
i) + ∆

(17)

Furthermore:
lagi(F

j
i , s) =

[

WDPS
i (s) − WMPS

i (s)
]

−
[

WDPS
i (F j

i) − WMPS
i (F j

i)
]

=
[

WDPS
i (s) − WDPS

i (F j
i)

]

−
[

WMPS
i (s) − WMPS

i (F j
i)

]

=
[

WDPS
i (s) − WDPS

i (F j
i)

]

− ∆

(18)

where the last identity follows from (16). Thanks Lemma 3, wehave

WDPS
i (F j

i , s) ≤
Ui

M
·
[

∑

j∈αpos lagj(b) − Lres(Jj
i)

] (19)

Substituting the last inequality in (18), we get

lagi(F
j
i , s) =

(WDPS
i (s) − WDPS

i (F j
i)) − ∆ ≤

Ui

M
·
[

∑

j∈αpos lagj(b) − Lres(Jj
i)

]

− ∆

(20)

Finally, summing this inequality to (17), we get the thesis.

2

4.3 Bounding the total lag

We need a last intermediate lemma.

Lemma 5 LetA(t̄) be any subset, comprised of no more thanM − 1 tasks, of the set of the tasks under service at timet̄.

We have that
∑

j∈A(t̄)

lagj(t̄) ≤ (M − 1)2 · Lmax (21)

Proof. We will proceed by induction.

The time interval[0, t̄] can be divided into a finite sequence of sub-intervals, such that during each sub-interval, the

set of the tasks under service does not change. In the rest of this proof, we will call just asub-intervaleach of the

14

above defined sub-intervals. Consequently, during each sub-interval the sum of the lags of the tasks under service cannot

increase. Hence the sum of the lag of any subset of the tasks under service during any sub-interval is upper bounded by

the sum of the lags of the same tasks at the beginning of the sub-interval. Lett̄′ be the beginning of the sub-intervalt̄

belongs to, we have thatA(t̄) = A(t̄′) and that

∑

j∈A(t̄)

lagj(t̄) ≤
∑

j∈A(t̄)

lagj(t̄
′) (22)

Hence, in the rest of this proof, we prove that the thesis holds at the beginninḡt′ of the sub-interval̄t belongs to. For

the base case, the thesis trivially holds ift̄′ = 0. As inductive hypothesis, suppose that the thesis holds forany subset,

comprised of no more thanM − 1 tasks, of the tasks under service at the beginning of any of the sub-intervals preceding

the onēt belongs to.

We can assume, without losing generality, that theV < M tasks inA(t̄′) are the tasks1, 2, . . ., V , and that they are

ordered by the start timesj of the chain headsXj. Let J(Xj) be the job the fractionXj belongs to. Letbj be the last

priority blocking period of the fractionXj , let αj(t) be the set of the tasks that have pending jobs with priority nolower

thanXj at timet, and letαpos
j ≡ {i ∈ αj(bj) | lagi(bj) > 0}. From Lemma 4 we can write

∑

j∈A(t̄) lagj(t̄
′) ≤

∑

j∈A(t̄) lagj(sj) ≤
∑

j∈A(t̄)

{

Lres(J(Xj)) +
Uj

M
·
[

∑

j∈α
pos
j

lagj(bj) − Lres(J(Xj))
]}

(23)

because the lag of a task can not increase during the execution of one of its chains, and the taskj ∈ [1, V] is continuously

served during[sj , t̄]. From the inductive hypothesis and the fact that∀j ∈ A(t̄)
∣

∣αpos
j (bj)

∣

∣ ≤ M − 1, we have

max
j∈A(t̄)

∑

i∈α
pos
j

lagi(bj)

 ≤ (M − 1)2 · Lmax

Hence
∑

j∈A(t̄) lagj(t̄
′) ≤

∑

j∈A(t̄)

{

Lres(J(Xj)) +
Uj

M
·
[

(M − 1)2 · Lmax − Lres(J(Xj))
]

}

=
∑

j∈A(t̄)

{

M−Uj

M
· Lres(J(Xj)) +

Uj

M
· (M − 1)2 · Lmax

}

≤
∑

j∈A(t̄)

{

M−Uj

M
· Lmax +

Uj

M
· (M − 1)2 · Lmax

}

=

Lmax ·
∑

j∈A(t̄)

{

1 −
Uj

M
+

Uj

M
· (M2 − 2 · M + 1)

}

=

Lmax ·
∑

j∈A(t̄)

{

1 −
Uj

M
+

(

Uj · M − 2 · Uj +
Uj

M

)}

=

Lmax ·
∑

j∈A(t̄)

{

1 −
Uj

M
+ Uj · M − 2 · Uj +

Uj

M

}

=

Lmax ·
∑

j∈A(t̄) {1 + Uj · M − 2 · Uj} =

Lmax ·
∑

j∈A(t̄) {1 + Uj (M − 2)} ≤

Lmax ·
∑

j∈A(t̄) {1 + (M − 2)} =

Lmax ·
∑

j∈A(t̄) (M − 1) =

V · (M − 1) · Lmax ≤

(M − 1)2 · Lmax

(24)

2

We can now compute an upper bound to the total lag.

15

Theorem 3 LetX be a generic job fraction, belonging to a jobJj
i , which starts service in the MPS after being blocked

by priority, that starts service at times in the MPS after being blocked by priority. We have

∑

q∈αpos

lagq(b) ≤ (M − 1)2 · Lmax (25)

whereb is the beginning of the last priority blocking period ofX , andαpos ≡ {i ∈ α(b) | lagi(b) > 0}.

Proof. The thesis trivially follows from the previous lemma.2

4.4 Maximum lag and maximum lateness

We can now prove Theorems 1 and 2.

Proof of Theorem 1 Thanks to Lemma 1, to prove (2), all we need is to compute an upper bound to the lag experienced

by taski at the start times of any job fractionX belonging to a jobJj
i . Apart from the trivial case when the jobJj

i starts

service as it arrives, and is served until completion, we will distinguish between two cases:

1. X has been blocked by priority. Thanks to Lemma 4, we have

lagi(s) ≤

Lres(Jj
i) + Ui

M
·
[

∑

j∈αpos lagj(b) − Lres(Jj
i)

]

whereb is the beginning of the last priority blocking period forX . Substituting (25) (Theorem 3) into the last

expression, we get
lagi(s) ≤

Lres(Jj
i) + Ui

M
·
[

(M − 1)2 · Lmax − Lres(Jj
i)

]

=

Lres(Jj
i) + Ui ·

[

(M−1)2

M
· Lmax −

Lres(Jj
i)

M

]

=

(1 − Ui

M
) · Lres(Jj

i) + Ui ·
(M−1)2

M
· Lmax

(26)

which proves (2).

To prove (3), assume thatX is the last fraction ofJj
i . We haveWMPS

i (s, f j
i) = Lres(Jj

i), while during the same

time interval,WDPS
i (s, f j

i) ≤ Ui · L
res(Jj

i) (recall that∀t RDPS
i (t) = Ui · R(t)). As a consequence:

lagi(f
j
i) − lagi(s) =

WDPS
i (s, f j

i) − WMPS
i (s, f j

i) ≤

(Ui − 1) · Lres(Jj
i)

As a conclusion, considering also (26):

lagi(f
j
i) =

lagi(s) + lagi(f
j
i) − lagi(s) ≤

(1 − Ui

M
) · Lres(Jj

i) + (Ui − 1) · Lres(Jj
i) + Ui ·

(M−1)2

M
· Lmax =

(1 − 1
M

) · Ui · L
res(Jj

i) + Ui ·
(M−1)2

M
· Lmax

which proves (3).

2. X has been blocked by precedence. LetXfirst be the head of the chainX belongs to. Considering thatXfirst

necessarily falls into the previous case, that lagi(s) ≤ lagi(sfirst), and Inequality (26), Inequality (2) follows.

Using the same arguments as in the previous case, (3) can be proven as well.2

We can finally prove our upper bound on the maximum lateness.

16

Proof of Theorem 2 Recall that latji = f j
i − F j

i . If f j
i ≤ F j

i , the thesis trivially holds. Consider the casef j
i > F j

i .

The schedules of (the fractions of)Jj
i in the MPS and in the DPS, and hence the differencef j

i − F j
i , do not depend on

whether taski issues new jobs afteraj
i . Suppose that indeed an indefinite number of jobs has been issued by taski at time

aj
i . We will prove the thesis by contradiction. Suppose that:

f j
i − F j

i >
1
R
·
[

M−1
M

· Li + (M−1)2

M
· Lmax

]

=

1
Ui·R

· Ui ·
[

M−1
M

· Li + (M−1)2

M
· Lmax

]

In such a case we have that:

WDPS
i (F j

i , f j
i) > Ui ·

[

M − 1

M
· Li, max +

(M − 1)2

M
· Lmax

]

Furthermore, sinceWDPS
i (F j

i) = WMPS
i (f j

i) we have

lagi(f
j
i) =

WDPS
i (f j

i) − WMPS
i (f j

i) =

WDPS
i (f j

i) − WDPS
i (F j

i) =

WDPS
i (F j

i , f j
i) >

Ui ·
[

M−1
M

· Li + (M−1)2

M
· Lmax

]

which contradicts Inequality (3).2

5 Simulations

We are simulating EDF global scheduling over 9 SMP platforms, comprised of2, 3, . . . , 10 unit-speed processors, re-

spectively. For each SMP, we consideredveryheavy task sets, i.e. task sets made of tasks with utilization higher than0.8

each.

For each SMP50 task sets were randomly generated. Finally, for each task set, the corresponding EDF schedule was

simulated for2 · 104 · 105 ticks,105 ticks being the maximum task period.

According to the simulations, the bound is tight only for very heavy tasks on 2 processors, while it is too conservative

in the other cases. Especially, the distance between the bound and the observed lateness grows with the number of

processors.

6 Conclusions

In this paper we propose an upper bound to the lateness of softreal-time tasks scheduled by EDF on a SMP. First we show

that not all scheduling algorithms are able to provide a bounded lateness in the case of full utilization. Then, we propose

a bound and prove its correctness. The proposed bound is in a simple closed form, and it has been shown to be virtually

tight for heavy task sets on 2 processors. According to the simulations, the bound is not tight for more than 2 processors.

Especially, the distance between the bound and the observedlateness grows with the number of processors.

17

References

[1] J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of asynchronous periodic tasks.Journal of Computer and System
Sciences, 68(1):157–204, 2004.

[2] B. Andersson.Static-priority scheduling on multiprocessors. PhD thesis, Department of Computer Engineering, Chalmer Uni-
versity of Technology, Goteborg, Sweden, 2003.

[3] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors. In IEEE, editor,Proceedings of the IEEE
Real-Time Systems Symposium, Dec 2001.

[4] T. Baker. Multiprocessor EDF and deadline monotonic schedulability analysis. InProceedings of the 24th IEEE International
Real-Time Systems Symposium, RTSS’03, 2003.

[5] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation.Algorithmica,
6, 1996.

[6] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah.Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, chapter A Categorization of Real-time Multiprocessor Scheduling Problems and Algorithms. Chapman
Hall/ CRC Press, 2004.

[7] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform multiprocessors. In IEEE, editor,Proceedings of the IEEE
Real-Time Systems Symposium, pages 183–192, Dec 2001.

[8] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems on multiprocessors.Real-Time Systems,
25(2-3):187–205, Sep-Oct 2003.

[9] R. Graham.Computer and Job Scheduling Theory, chapter Bounds on the performance of scheduling algorithms. Wiley, New
York, 1976.

[10] R. Ha and J. W. S. Liu. Validating timing constraints in multiprocessor and distributed real-time systems. In14th IEEE Interna-
tional Conference on Distributed Computing Systems, Los Alamitos, 1994.

[11] A. Khemka and R. K. Shyamasunda. Multiprocessor scheduling of periodic tasks in a hard real-time environment. Technical
report, Tata Institute of Fundamental Research, 1990.

[12] A. Mok and M. Dertouzos. Multiprocessor scheduling in ahard real-time environment. InProceedings of the Seventh Texas
Conference on Computing Systems, 1978.

[13] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks on multiprocessor systems.Journal on Real Time Systems, 9, 1995.
[14] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multiprocessors. InProceedings of the at

the 15th Euromicro Conference on Real-time Systems, pages 51–59, July 2003.

18

