
Integrating Linux and the real-time ERIKA OS
through the Xen hypervisor

Arianna Avanzini
and Paolo Valente

Università di Modena e Reggio Emilia
arianna.avanzini@unimore.it

paolo.valente@unimore.it

Dario Faggioli
Citrix System Italia Srl

dario.faggioli@citrix.com

Paolo Gai
Evidence Srl

pj@evidence.eu.com

Abstract—Modern user interfaces grow more and more com-
plex and cannot be possibly handled by the same software
components in charge of the timely execution of safety-critical
control tasks.
Evidence Srl recently proposed a single-board dual-OS system
aimed at combining the flexibility of the Linux general-purpose
operating system, which is able to produce any complex user
interface, and the reliability of the automotive-grade ERIKA En-
terprise operating system, a small-footprint real-time OS suitable
for safety-critical control tasks and able to execute commands
triggered by Linux.
The operating systems run on dedicated cores and, for efficiency
reasons, they share memory with limited support for memory
protection: although the system allows running two operating
systems, from a safety certification point of view it suffers from
the fact that safety-critical and non-safety-critical components
should be isolated from each other.
In this paper we present, as an improvement to the initial
implementation, again a double-OS system running, on a dual-
core platform, ERIKA Enterprise and a full-featured Linux OS,
but using the Xen hypervisor to run the two operating systems in
two isolated domains. In the proposed setup, each of the domains
runs on a dedicated core, assigned statically by the hypervisor.
Linux runs as the control domain, and is therefore able to execute
any of the components of the Xen toolstack; it is also able to grant
to the real-time operating system access to any I/O-memory range
needed for control tasks.
The described system also provides a simple, safe communication
mechanism between the two operating systems, based on Xen’s
inter-domain event notification primitives and explicit sharing
of a dedicated set of memory pages by the real-time operating
system.

I. INTRODUCTION

Modern cars, as well as aircrafts, are equipped not only
with more and more complex control systems, but also with in-
creasingly advanced user interfaces and infotainment systems.
Control software components, in charge of the execution of
safety-critical tasks, must be complemented with more flexible,
general-purpose ones, able to provide whatever infotainment
services is required. As of the latter, the growing computational
demand of modern user interfaces and complex infotainment
applications can now be met only with multi-core systems,
which are actually supplanting single-core ones. The emerging
trend in software industries is to complement real-time operat-
ing systems, in charge of performing safety-critical tasks, with
general-purpose ones, able to provide any infotainment service
and to handle sophisticated user interfaces.

Figure 1: Outline of the initial design

In the context of integrating safety-critical and non-safety-
critical software components, the company Evidence Srl has
recently proposed a dual-operating-systems design based on a
Freescale dual-core ARM board [13]. Such a design allows
to run in parallel a real-time operating system and a general-
purpose operating system. As of the latter, the selected general-
purpose operating system, in this pilot design, is Linux, a very
commonly used open-source solution which is commonly used
in embedded applications. Despite its widespread usage, Linux
has not achieved any certification for real-time or automotive,
due to its complexity, to the small amount of documentation
available for some of its core components, and to the huge
effort needed by the process of certifying an operating system
so large.

As of handling safety-critical tasks, the software compon-
ent of choice is ERIKA Enterprise [11, 12], a low-footprint
automotive-grade operating system. ERIKA Enterprise is an
open-source operating system with hard real-time support
which obtained the OSEK-VDX certification for automotive
applications [24]. ERIKA Enterprise has a very small foot-
print (1-4 KB) and is therefore suited for most embedded
applications; it also supports real-time task scheduling: its task
scheduler implements hard real-time scheduling algorithms
such as Fixed Priority Scheduling [5], Immediate Priority
Ceiling and Earliest Deadline First [22]. In the solution initially
proposed by Evidence Srl, each of the operating systems is
exclusively assigned a core, so as to (a) reduce as much
as possible temporal interference from the general-purpose
operating system which could affect the response latencies
of the real-time operating system; (b) allow the real-time
operating system to be booted in parallel to the general-purpose
operating system.

Also, the two running operating systems share memory for

978-1-4673-7711-9/15/$31.00 c©2015 IEEE

simplicity purposes and implement a very efficient message-
passing communication based on shared memory and inter-
rupts. A consequence of this design aspect is that it provides
limited support to isolation of software components that are
responsible for the correct and timely execution of safety-
critical tasks from tasks executed by the non-safety-critical
software components.
In more detail, two problems might arise from such an inter-
action between safety-critical and non-safety-critical compon-
ents.
(a) A malfunction of the general-purpose operating system
might pollute the memory area of the real-time operating
system, therefore leading to the incorrect execution of safety-
critical tasks; this is not very likely to happen, as it would
mean that Linux attempted to write outside of its addressing
space, but is still possible and, in the event of its happening,
would possibly cause catastrophic damage to users.
(b) Conversely, a malfunction of the application running on
the real-time operating system could have memory segment
descriptors clobbered with, and as a consequence of this any
kind of memory pollution in the Linux memory area could
happen.

The main idea behind the proposed work is to replicate the
structure of the previous solution, but adding a hypervisor
as an extra abstraction layer to isolate safety-critical and
non-safety-critical software components by mediating accesses
to shared memory and interrupts. The hypervisor we selected
and exploited for this new solution is Xen [6]: the rationale
behind this choice included its being widely used in embedded
applications, its very low footprint and its already finalized and
widely-tested ARM support.

Finally, the result of this work has been integrated in a
virtual machine to ease the possibility to replicate the current
design environment [35].

The content of the paper is organized as follows: Section II
outlines related works relevant to this paper’s topic; Sections
III and IV contain references to the internal implementation
of the Xen hypervisor and its communication mechanisms,
including the design choices made during the development.
Section V provides an evaluation of the results obtained, and
finally Section VI states our conclusions.

II. RELATED WORK

Hypervisors are becoming more and more common in
nowadays embedded computing. Among the reasons of their
popularity we can cite the increasing complexity of mixed-
criticality embedded applications together with the need to
reuse existing software stacks. In particular, the advent of
functional safety standards such as the automotive standard
ISO26262, or similar standards in the avionics and industrial
domains, makes important the need to guarantee the highest
safety standards of the most critical software subsystems. On
the other hand, the rest of the system should continue to work
reusing existing legacy software stacks, including complete
embedded Linux subsystems.

In particular, we can highlight commercial solutions as
Integrity [25], PikeOS [26] and WindRiver Hyperscan [27],
which are likely the hypervisors most used in safety-critical
avionics systems. Our aim was to exploit an open-source

product to obtain an equally open-source solution, and for that
reason we did not consider them.

On the open-source arena, we can highlight various type
of approaches. Some are linked to the developments made in
virtualization and cloud environments, such as Xen [1] and
KVM [8]. Those are quite mature projects, with an established
community and ARM hypervisor support. Other solutions
instead tend to implement a minimal hypervisor which is small
and amenable to mixed criticality systems. On this category we
would like to cite QuestOS [28, 30], NOVA [29], and GMV
Air [31]. Unfortunately they are not available for the ARM
architecture, and therefore they have not be considered for
our work. There is also a line of development of hypervisor
for constrained architectures without MMU. In this case the
hypervisor is used to para-virtualize interrupts, as in the work
performed on the Aramis Project on Infineon Tricore [33].
Other solutions also include the possibility to use multi-core
platforms to have multiple OS on different cores. In addition
to the implementation performed by Evidence [13], we would
like to cite TI Concerto [34], which integrates on the same
chip a DSP and a Cortex M3 (not running Linux), and the
FreeRTOS integration with Linux available as a demo for
Altera/Xilinx FPGAs [21]. Finally, we would like to cite the
CodeZero hypervisor [32], available on the ARM architecture,
and approaches using ARM TrustZone, such as those proposed
by Mentor Graphics.

The hypervisor which has been selected for this work
is Xen [6] because of its low footprint, support for ARM
hypervisor extensions, growing open-source community, inde-
pendence on the Linux kernel and mainly because of the safe
resource management system it provides1.

While exploiting a new abstraction layer to improve what
was lacking in the previous design, the new solution must be
able to fulfill the requirements that had the previous design
be considered already feasible: (a) it must prevent as much
as possible temporal interference between the running
operating systems; (b) it must provide a communication
channel that allows the real-time operating system and the
general-purpose operating system an efficient interaction.
The way in which this challenge was tackled by exploiting
some of Xen’s natively available features will also be set out
in the following.

1For a more detailed explanation of the reasons behind this choice please
refer to [1, 2, 3, 4].

III. HYPERVISOR-BASED DESIGN

Figure 2: Outline of the hypervisor-based design

This Section outlines the new design proposed in this
paper, which basically replicates the one already set out by
Evidence Srl and described in Section I, but also adds the
a hypervisor as an extra layer to improve isolation between
concurrently-running operating systems; this Section will also
provide a detailed insight in its proposed implementation,
therefore evaluating the benefits and disadvantages of the used
mechanisms.

The Xen hypervisor makes use of two types of guest oper-
ating systems. The dom0 (also referred to as control domain)
is a privileged domain which is started during boot, has direct
access to hardware, and manages unprivileged domains. A
domU (or unprivileged domain) is a domain which, by default,
doesn’t have any direct access to the underlying hardware, but
instead uses peripherals by exploiting abstractions of hardware
components as exposed by the control domain.

Being a proof-of-concept prototype, the new design ini-
tially sets up the Linux general-purpose operating system as a
dom0 and runs the ERIKA Enterprise real-time operating sys-
tem as a domU. The hypervisor-based design proposed in this
paper was implemented on a cubieboard2 [15], an ARMv7-
based board featuring a dual-core Allwinner A20 processor
with virtualization extensions. The board was chosen both for
its compliance with common requirements of an embedded
system, and for its compliance with the requirements of the
design itself, which included having a multi-core platform
to run each operating system on a dedicated core; it also
already had full compatibility with the ARM port of the
Xen hypervisor, which explicitly provides support for ARM
processors with virtualization extensions.
The ERIKA Enterprise operating system already supported
numerous multi-core ARM-based boards; the generic structure
of the code was extended to port it to the selected platform.
The ERIKA operating system was moreover modified to avoid
executing machine instructions which would potentially allow
it to interfere with the execution of other domains and/or give
a domain access to the addressing space of other domains,
which would have been aborted by the hypervisor. Also, the
build system had to be modified as, at the time, the domain
loader included in the Xen-on-ARM toolstack only supported
a non-compressed zImage format.

Finally, ERIKA Enterprise supported interrupt handling
and distribution in a common fashion: it set up multiple inter-
rupt handlers, each taking care of a single physical interrupt

line. The interrupt distribution system provided by the Xen
hypervisor, instead, is based on event channels, and basically
has all emulated interrupt signals piggy-backed by a single
physical per-processor interrupt (PPI 31). A driver for the
Generic Interrupt Controller (GIC) provided by Xen has been
successfully integrated in the code of the ERIKA Enterprise
operating system.

As soon as ERIKA Enterprise was able to run as a Xen-
on-ARM guest, we chose the GPIO controller as a reference
for a simple peripheral to be handled in the restricted domain.
Given that ERIKA Enterprise runs as an unprivileged domain,
it is not allowed as a default to access I/O-memory areas
and interrupts related to external peripherals; at the time of
this work, Xen did not support granting direct access to I/O-
memory regions to domUs (I/O-memory pass-through) running
on ARM: it was therefore necessary to port the related hy-
percall (XEN_DOMCTL_memory_mapping), which existed
only for the x86 architecture, to ARM2.

One of the most relevant requirements set during the
development of the initial dual-operating-system design is to be
able to reduce as much as possible the interference between the
real-time operating system and the general-purpose operating
system. To such a purpose, the previous design included having
each operating system running on a separate core of a multi-
core platform. The new design achieves the same goal, as the
Xen hypervisor allows to statically assign cores to running
domains (CPU pinning).

IV. IMPLEMENTATION OF INTER-DOMAIN
COMMUNICATION

This Section aims at describing the communication mech-
anism which has been implemented in the hypervisor-based
dual-operating-system design; the target use case of the in-
teraction is to enable the general-purpose operating system to
trigger the execution of a command by the real-time operating
system as it would happen, e.g., in an advanced user interface
able to trigger the execution of a task on the hardware facilities
which ERIKA is in charge of controlling. The goals that were
set for this implementation step are briefly outlined in the
following.
Efficiency: communication must be as fast as possible and
involve the hypervisor as little as possible.
Safety: communication must be performed in a way that
prevents operating systems from interfering with each other.
This is achieved by fully exploiting Xen’s mediation between
the two operating systems.
Asynchrony for the real-time operating system: a notifica-
tion triggered from the general-purpose operating system must
not preempt any high-priority task running on the real-time
operating system. The real-time operating system must be able
to define priorities and determine which of the tasks running
in its container are at a higher priority than interrupts.
Synchrony for the general-purpose operating system: the
general-purpose operating system must be notified as soon
as possible of the completion of a command. The thread of
execution of the general-purpose operating system interacting

2The code performing the port has been merged into the Xen hypervisor
shortly after its proposal on the development mailing list and is currently
available in Xen 4.5.

with the real-time operating system must be able to block until
the command has been completed.

Communication has been implemented with two interacting
and interdependent software components, the first residing in
the general-purpose dom0 and the second hosted by the real-
time domU. The communication driver has been implemented
with a simplified split device driver model, based on a shared
memory region and an interrupt line handled by the hypervisor
(event channel). The access of the domains to both memory
and interrupts is mediated by Xen.

A. ERIKA Enterprise communication driver

As soon as it is initialized, the ERIKA Enterprise instance
needs to perform tasks that enable the general-purpose Linux
operating system to enumerate the commands and related
resources it makes available. By having ERIKA Enterprise
explicitly performing such operations, we make sure that it
can assign them the priority it deems necessary with respect
to other running tasks. Also, by letting it explicitly reserve
resources for inter-domain communication, we ensure that
ERIKA Enterprise is aware of the fact that such resources
are actually used for communication and are as a consequence
potentially subject to concurrent access.

Listing 1 shows the pseudo-code for the operations per-
formed by ERIKA Enterprise in order to setup resources
reserved for inter-domain communication. Firstly, ERIKA En-
terprise requests to the Xen hypervisor an unbound event
channel to perform communication. This is achieved by using
the proper hypercall, which returns the event channel number
reserved by Xen for the domain. While issuing the hypercall,
ERIKA Enterprise will need to specify that the event channel
is intended for inter-domain communication, and therefore any
other domain can bind to it. Next, ERIKA enterprise needs
to get the start physical address of the memory region it
intends to use for the communication. After obtaining such a
direct reference to the memory pages used for communication,
ERIKA Enterprise must interact once again with the Xen
hypervisor to set them as mappable by other domains; for
security reasons, it will grant access privileges just to the
dom0, which in our proposed setup is the general-purpose
operating system: the dom0 will therefore be able to map
such a memory region in its own addressing space and use
the memory directly. Last, ERIKA Enterprise needs to pass
the references to both the event channel and the memory area
to the dom0 in some way: it therefore exploits the XenStore
by writing the two needed pieces of information as values to
conventional XenStore keys.

B. Linux communication driver

To implement the other half of the communication driver,
the Linux kernel has been extended with a specific device
driver; its structure and goals quite resemble those of the
previously-proposed implementation, but while the interface
is kept as homogeneous as possible, the core of the imple-
mentation is adapted to make use of Xen’s facilities. The user
interface is a set of sysfs tunables used to provide to the
kernel the parameters of a command to be executed by the
ERIKA domU. In the case of the proposed proof-of-concept,
commands concern the GPIO controllers and simply allow to

set a particular GPIO pin to a particular value.
Listing 2 shows the simple algorithm used in the Linux half of
the communication driver. The code implementing sysfs hooks
has been omitted as it doesn’t directly concern the design
proposed in this document; also, the mapped memory region
is treated as the container of a message memory area whose
specific structure is of little or no relevance to understand the
implemented policy.

The communication algorithm is implemented with the
specific purpose of avoiding as much as possible any inter-
ference by the general-purpose operating system on the real-
time operating system. In fact, each command to be sent to the
real-time ERIKA operating system is seen as a self-contained
transaction and the event channel is actually bound only for the
minimum indispensable time to perform the needed operation.
This also allows for a fine-grained identification of a valid state
versus an invalid state of the shared memory area.

C. Command delivery and handling

The core communication mechanism works on top of the
shared memory region and event channel set up by the two
operating systems. As shown in Listing 2, as soon as the
write_command() function is invoked, the shared memory
area is populated with data which is relevant to the execution of
the command itself, in this case the pin number and pin value.
Afterwards, an event-channel-related hypercall is invoked to
notify the other domain about the changes performed on the
shared memory region.

If the event channel is masked from the ERIKA Enterprise
operating system’s side, the signal will not be delivered to the
unprivileged domain until the channel is unmasked: this allows
that high-priority tasks are not preempted by the execution
of communication primitives; also, the asynchrony of the
communication, in fact, allows to set a priority to event channel
handlers with respect to ERIKA Enterprise tasks which are
ready for execution. If instead the event channel is not masked,
as soon as the notification is received ERIKA Enterprise will
handle the interrupt with a dedicated routine. The pseudo-code
of such routine is shown in Listing 3, which instead omits all
device-specific code.

V. EVALUATION OF THE RESULTS AND FUTURE WORK

This Section evaluates benefits and disadvantages brought
by the dual-operating-system design proposed in this paper.
The evaluation focuses on functional aspects of the design
itself and does not provide any information about the per-
formance of the new design as compared to the performance
of the old design. This choice derives from the fact that, even
if already able to provide all the features required by the use
case, the prototype is still at the stage of a proof of concept:
the development of such a system focused on design aspects
more than on performance.

A. Evaluation of the communication mechanism

The communication setup routine involves issuing two
hypercalls from the side of the real-time operating system;
after such a setup is completed, however, the general-purpose
operating system is able to make direct use of the shared

Listing 1: ERIKA Enterprise communication driver internals
1 g l o b a l comm_area ;
2
3 a l l o c a t e _ u n b o u n d _ e v e n t _ c h a n n e l :
4 r e t u r n XEN_EVTCHN_OP(a l l oc_unbound , h a n d l i n g _ r o u t i n e) ;
5
6 rese rve_comm_area :
7 r e t u r n g e t _ m a c h i n e _ a d d r e s s _ o f _ c o m m u n i c a t i o n _ p a g e s () ;
8
9 r e g i s t e r _ c o m m _ a r e a _ i n _ g r a n t _ t a b l e (comm_area , dom) :

10 XEN_gnttab_op (comm_area , dom) ;
11
12 a d v e r t i s e _ c h a n n e l _ a n d _ m e m o r y (ev tchn , r e f) :
13 X e n S t o r e _ w r i t e (" e r i k a _ e v t c h n " , e v t c h n) ;
14 X e n S t o r e _ w r i t e (" er ika_memory " , r e f) ;
15
16 s e t u p _ i n t e r d o m _ c o m m _ s t r u c t u r e s :
17 e v t c h n = a l l o c a t e _ u n b o u n d _ e v e n t _ c h a n n e l () ;
18 comm_area = rese rve_comm_area () ;
19 r e g i s t e r _ m e m o r y _ p a g e s _ i n _ g r a n t _ t a b l e (comm_area , dom0) ;
20 a d v e r t i s e _ c h a n n e l _ a n d _ m e m o r y (ev tchn , comm_area) ;

Listing 2: Linux communication driver internals
1 g l o b a l e v t c h n = INVALID , comm_area = INVALID ;
2
3 b i n d _ w i t h _ e r i k a _ e v t c h n :
4 r e t u r n X e n S t o r e _ r e a d (" e r i k a _ e v t c h n ") ;
5
6 g e t _ e r i k a _ m e m o r y _ r e f e r e n c e :
7 memref = X e n S t o r e _ r e a d (" er ika_memory ") ;
8 r e t u r n XEN_gnttab_op (map , memref) ;
9

10 s i g n a l _ o n _ e v t c h n (e v t c h n) :
11 XEN_evtchn_op (NOTIFY , e v t c h n) ;
12
13 write_command :
14 comm_area . p in_number = num , comm_area . p i n _ v a l u e = v a l ;
15 s i g n a l _ o n _ e v t c h n (e v t c h n) ;
16
17 ge t_ re tu rn_ f rom_memory :
18 r e t u r n comm_area . r e t ;
19
20 o n _ p i n _ v a l u e _ c h a n g e :
21 v a l = g e t _ p i n _ v a l u e () , num = ge t_p in_number () ;
22 e v t c h n = b i n d _ w i t h _ e r i k a _ e v t c h n () ;
23 comm_area = g e t _ e r i k a _ m e m o r y _ r e f e r e n c e () ;
24 write_command (r e f , va l , num) ;
25
26 o n _ e r i k a _ i n t e r r u p t :
27 u n b i n d _ e r i k a _ e v t c h n (e v t c h n) ;
28 r e t = ge t_ re tu rn_ f rom_memory (comm_area) ;
29 /∗ h a n d l e r e t u r n v a l u e ∗ /
30 e v t c h n = r e f = INVALID ;

memory region, needing no further mediation from the hyper-
visor’s side to access the memory area used for inter-domain
communication.
Each notification sent to the partner operating system to
signal about the presence of a new command or to notify
the completion of a command, however, involves the Xen
hypervisor, which might constitute a performance bottleneck.
In fact, such need for constant participation of the hypervisor in
the communication between the two operating systems could
limit the capabilities of the real-time operating system, as an
interrupt storm could keep the machine stuck in hypervisor
mode for too long.

B. Evaluation of the design

The new design provides an improved support to isol-
ation of concurrently-running operating systems, adding the
Xen hypervisor as an extra layer which mediates all accesses of
concurrently-running operating systems to shared memory and
interrupts. It also allows to highly reduce temporal interference
by statically assigning a CPU to each domain for exclusive
use. Finally, it implements a simple, efficient communication
mechanism based on shared memory accessed through the hy-
pervisor’s mediation and that involves the hypervisor the least
possible, exploiting hypercalls only when strictly necessary.

The proposed design, however, provides no guarantees on

Listing 3: Interrupt handling in ERIKA Enterprise
1 g l o b a l num , va l , comm_area ;
2
3 g e t _ p i n _ n u m b e r _ a n d _ v a l u e :
4 num = comm_area . p in_number ; v a l = comm_area . p i n _ v a l u e ;
5
6 execute_command :
7 r e t u r n g p i o _ s e t (num , v a l) ;
8
9 s i g n a l _ o n _ e v t c h n (e v t c h n) :

10 XEN_evtchn_op (NOTIFY , e v t c h n) ;
11
12 n o t i f y _ r e s u l t (r e t) :
13 comm_area . r e t = r e t ;
14 s i g n a l _ o n _ e v t c h n (e v t c h n) ;
15
16 h a n d l i n g _ r o u t i n e :
17 g e t _ p i n _ n u m b e r _ a n d _ v a l u e () ;
18 r e t = execute_command () ;
19 n o t i f y _ r e s u l t (r e t) ;

the boot response times of the real-time operating system,
as it is run as an unprivileged Xen domain and therefore it
must fully wait for the general-purpose operating system to
fully boot before being able to start. Actually, the proposed
solution does not even guarantee that the real-time operating
system boots at all, as any malfunction of the general-purpose
operating system could prevent it from being correctly ini-
tialized and therefore would prevent it from being able to
boot the real-time operating system. Also, the Xen hypervisor,
which constitutes a very critical component of the proposed
design, is not certified for real-time applications; as of the
current state of the project, it should be easily certifiable
according to Design Assurance Level (DAL) E/D standards,
as documentation exists for the most relevant features it
provides, but cannot be brought as it is now to a DAL-B/A
certification level, which would allow it to be exploited for
real-time applications, or to meet an automotive-grade standard
such as the Automotive Safety Integrity Level (ASIL). Also,
the support to isolation can definitely be improved, as
having the two software components running as differently-
privileged domains could still allow for interference between
the execution of the two operating systems.

C. Future work

The roadmap which has been set up for the project
currently involves three parallel threads: (a) investigate a
possibility to boot the real-time operating system as fast as
possible; (b) investigate a way to actually provide complete
isolation between the safety-critical component and the non-
safety-critical one; (c) verify whether the Xen hypervisor can
be certified for real-time applications at any level. As of the
first two threads, one possibility includes having the real-
time operating system running as the control domain and
the general-purpose operating system running as unprivileged
domain. This would allow to reduce the possibility of a system-
wide malfunction due to interference, but it would not entirely
remove it; also, it would be necessary to port at least a subset
of the features provided by the simplest toolstack provided by
Xen (most probably libxl) to ERIKA Enterprise. Another
possibility, which was just recently outlined, would exploit a
new design based on complete disaggregation of the safety-

critical and non-safety-critical components: a dom0 based on
a Mini-OS microkernel, able to boot in a few milliseconds,
would in this case start both ERIKA Enterprise and Linux
as unprivileged domains and allow them safe interaction and
access only to the resources which are strictly necessary to
each domU. This design, although more complex and difficult
to set up, would finally provide the required isolation level;
it would be however necessary to switch to a more suited
platform, e.g., a board providing more than two cores which
would be able to run the dom0 and the two domUs on
dedicated cores.
As of the second issue concerning certification of the Xen
hypervisor, there is ongoing effort to certify at least the
core subset of the hypervisor’s features for real-time applic-
ations [20]. A different line of action would instead include
considering the possibility to exploit another hypervisor that
has already achieved some kind of certification, such as the
Jailhouse partitioning hypervisor [18].

D. Porting the solution to other RTOS

We believe that the proposed solution can be easily ported
to other (small) operating systems. In particular, ERIKA En-
terprise has a rather limited set of requirements on the target
core instruction set and architecture. Every tiny RTOS making
usage of interrupts and having a rather limited hardware
abstraction layer can offer a similar porting. However, we
think the choice of ERIKA Enterprise is currently justified by
the fact it implements an automotive API making it a good
candidate for the integration in next-generation automotive
infotainment solutions.

VI. CONCLUSIONS

In this paper we described the work performed for porting
the ERIKA Enterprise kernel as a domU in XEN. The paper
highlighted the main design choices, and the current limitation
of the approach.

The result of this work is available as open-source, and has
generated high interest in the Xen development community,
resulting in the developed code being accepted in mainline
Xen and available since Xen 4.5.

The complete procedure to obtain the described setup has
also been described on the ERIKA Enterprise wiki to allow
easy installation and deployment, while a complete example
of the setup has been integrated in a publicly accessible virtual
machine [35].

As of future developments of this proof-of-concept work,
we plan to continue the porting to provide a complete
virtualization-based system on ARM-based microcontrollers.

REFERENCES

[1] P. Barham and B. Dragovic and K. Fraser and S. Hand and T. Harris
and A. Ho and R. Neugebauer and I. Pratt and A. Warfield, Xen and
the art of virtualization ACM SIGOPS Operating Systems Review,
vol. 37, n. 5, pages 164-177, 2003.

[2] K. Adams and O. Agesen, A comparison of software and hardware
techniques for x86 virtualization ACM Sigplan Notices, vol. 41, n.
11, pages 2-13, 2006.

[3] P. Dewan and D. Durham and H. Khosravi and M. Long and G. Nagab-
hushan, A hypervisor-based system for protecting software runtime
memory and persistent storage Proceedings of the 2008 Spring simula-
tion multiconference, pages 828-835, Society for Computer Simulation
International, 2008.

[4] V. Chaudhary and M. Cha and J. P. Walters and S. Guercio and S. Gallo,
A comparison of virtualization technologies for HPC, pages 861-868,
22nd International Conference on Advanced Information Networking
and Applications, 2008.

[5] J. P. Lehoczky, Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines, vol. 90, pages 201-209, RTSS 1990.

[6] Citrix, The Xen Project, the powerful open source industry standard for
virtualization, http://www.xenproject.org/, 2003.

[7] Qumranet, QEMU, Open-source processor emulator,
http://wiki.qemu.org/Main_Page, 2007.

[8] Qumranet, KVM, Kernel-based virtual machine, http://www.linux-
kvm.org/page/Main_Page, 2007.

[9] Oracle, Oracle VM VirtualBox, https://www.virtualbox.org/, 2007.
[10] VMware, VMware Virtualization for Desktop and Server, Application,

Public and Hybrid Clouds, http://www.vmware.com/, 1999.
[11] P. Gai, ERIKA Enterprise, Open-source OSEK/VDX-certified RTOS,

http://erika.tuxfamily.org, 2002.
[12] P. Gai and E. Bini and G. Lipari and M. Di Natale and L. Abeni,

Architecture for a portable Open Source Real Time Kernel Environment,
Proceedings of the 2nd Real time Linux Workshop, Orlando, Florida,
December 2000.

[13] P. Gai and C. Scordino and B. Morelli, A fully Open-Source platform
for automotive systems, http://www.evidence.eu.com/embedded-
linux-osekvdx-erika-enterprise-dual-core-automotive-cpu-without-
hypervisor.html, 2013.

[14] Denx, Das U-Boot, the Universal Boot Loader,
http://www.denx.de/wiki/U-Boot, 1999.

[15] Cubietech, Cubietech cubieboard2, http://linux-
sunxi.org/Cubietech_Cubieboard2, 2013.

[16] ISO, ISO 26262, http://www.iso.org/iso/catalogue_detail? csnum-
ber=43464, 2011.

[17] Continental Automotive GmbH, OSEK-VDX Portal, http://www.osek-
vdx.org/, 2007.

[18] J. Kiszka, Jailhouse: A Linux-based Partitioning Hypervisor,
http://lwn.net/Articles/574273/, 2013.

[19] The Xen Project, RT-Xen: Real-Time Virtualization based on Xen,
https://sites.google.com/site/realtimexen/, 2011.

[20] N. Studer and R. VanVossen, Xen and the Art of Certification,
http://www.slideshare.net/xen_com_mgr/art-certification, 2014.

[21] Xilinx, Zynq All Programmable SoC Linux-FreeRTOS AMP
Guide, http://www.xilinx.com/support/documentation/sw_manuals/
petalinux2014_2/ug978-petalinux-zynq-amp.pdf, 2014.

[22] G. Lipari, "Earliest Deadline First", Scuola Superiore Sant’Anna, Pisa,
Italy, 2005.

[23] N. C. Audsley and A. Burns and A. J. Wellings, Deadline monotonic
scheduling theory and application Control Engineering Practice, vol.
1, n. 1, pages 71-78, Elsevier, 1993.

[24] OSEK-VDX Consortium, ERIKA Enterprise Cerification. Follow Pro-
ject Status / Certifications / Binding Index CB 4.5, http://www.osek-
vdx.org, 2014.

[25] Green Hills Software, INTEGRITY Hypervisor,
http://www.ghs.com/products/rtos/integrity_virtualization.html, 2015.

[26] Sysgo, PikeOS Hypervisor, https://www.sysgo.com/products/pikeos-
rtos-and-virtualization-concept/, 2015.

[27] WindRiver, HyperScan Hypervisor, http://windriver.com/products/ hy-
perscan/, 2015.

[28] Y. Li and R. West and E. Missimer, A Virtualized Separation Kernel
for Mixed Criticality Systems Proceedings of the 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (VEE), Salt Lake City, Utah, March 2014.

[29] U. Steinberg and B. Kauer, NOVA: A Microhypervisor-Based Secure
Virtualization Architecture Eurosys, 2010.

[30] R. West et al., QuestOS, http://www.hypervisor.org, 2015.
[31] GMV, GMV Air Hypervisor, http://www.gmv.com/en/aeronautics/

products/air/, 2015.
[32] CodeZero, CodeZero Embedded ARM Hypervisor,

http://www.l4dev.org/, 2015.
[33] D. Reinhardt and G. Morgan, An Embedded Hypervisor for Safety-

Relevant Automotive E/E-Systems Proceedings of SIES 2014, Pisa.
[34] Texas Instruments, TI Concerto, http://www.ti.com/lit/wp/spry174a/

spry174a.pdf, 2015.
[35] P. Gai and C. Scordino and B. Morelli and

P. Valente and A. Avanzini, Xen hypervisor porting,
http://erika.tuxfamily.org/wiki/index.php?title=Xen_Hypervisor, 2015.

